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4. rGO-dd Laminate Layer Formation
1.4 Regolith Abrasion

- Top layer of “rocky” material on the Moon or Mars Step 1: Disperse rGO-dd  Step 2: Cast rGO-dd onto Step 3: Affix plastic Step 4: Cast rGO-dd onto
- Electrostatically charged and stick to surfaces into working solvent: mold or thermoplastic into mold mold or thermoplastic
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Fig. 7: Fabrication procedure for rGO-dd lamination where rGO-dd is shown in green and the matrix polymer is shown in blue.
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a detector to monitor dose.

- Means of controlling surface temperature
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2. Polymers as Space Materials e nowrem - Preliminary trials using rGO-dd laminates as

" After Curing resistive heahng elements' Fig. 11: IR thermometer measure-
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Fig. 10: Icing on aircraft wing (top) and inter-

nal thermoset curing system (bot) from App. - MaX Temp: 82 OC (at 20 V)
Mat. & Inter., 2015.

8. Future Work

R RN 8.1 Simulated Micrometeoroid 8.2 Active Dust Mitigation

"4 % Do rGO-dd coatings provide any protectivebenefits to under- - Use elgctrlc charge to repel charged regolith particles from
insulating surfaces.
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Polymers are compelling materials for space applications due to their low density (light weight)
and many properties that are uniquely suited to the space enviornment:
- Range of mechanical and functional properties
- Many are H rich and are therefore strong radiation attenuators
- Stable nuclei due to low Z elemental composition
- Most are electronically insulating and therefore statically charge

Fig. 5: HDPE Insulation around crew quarters aboard the ISS as shielding
O

against radiation (left) and current 3D printer on ISS used to fabricate

Fig. 12: Conceptual diagram (left) and prototype samples (right) of a fiber-reinforced
multi layer composite that is laminated with rGO-dd. The underlying fibers and ther-
moplastic can be chosen to meet the needs for different space applications.

Fig. 13: Image of a |14 um particle imbedded into polymer, crater formed (top)
and 25 um particle resting on polymer after colliding with insufficient energy
to penetrate the polymer surface (left).

Polyethy|ene (PE) PEKK/PEEK (OxPEKK) tools and components from thermoplastics. ' " the micrometeoroid impact events?
. - Internal REVEALS collaboration with lan Dowding (GT)
3. Compatibilizing Reduced Graphene Oxide o omm  oams p——

Fig. 14: Images of charged regolith dust distribution over a patterned conductive surface before and after applying
electric curtain effect across panel. Dust is electrostaically thrown from surface. rGO-dd laminates could be used in
1) Space Environmental Effects on Dust Mitigation Technology: A MISSE-X Experiment , 2012

2) Lunar Dust Degradation Effects and Removal/prevention Concepts. (1967).
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8.3 Determine rGO-dd Vulnerabilities

- Overarching Goal: determine if rGO-dd can withstand
harsh environments encountered in space and to what
extent are underlying materials protected from these el-
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Fig. 6: SEM micrographs of rGO-dd
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Reduced graphene oxides (rGO) are a type of graphene obtained from graphite flake via chemical exfoliaiton, oxidation, UV light, micrometeoroids, ionizing radiation Noai
and reduction. While more processible than many graphene structures, rGO still suffers from a general lack of solubility | |- Pending proposal outcome, alternative ground-based ex-  FRINBISES < B For questions or additonal information please contact Zach
and miscibility with most solvents and polymers. The development of rGO-dd solves many of these issues and enables the periments are being planned. o MISSEE misione abosrs the 1SGRL Seibers at zachseibers@gmail.com.
fabrication of numerous types of composite samples. e T e e

robotic arms piloted by astronauts.




