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St d A 4. Calculate mixing depths at each grid-size (CSFDs) of crater floors. B. Spatial distribution of average regolith mixing depths in crater
U rea 7 floors. C. Average regolith mixing depth profiles for target craters (Faustini: ~6 m; Shoemak-
Target craters surveyed in this study are located in the lunar er: ~18 m; Haworth: ~17 m).

south pole and are located between 85°S - 90°S, and these in-
clude Haworth, Shoemaker and Faustini (Fig. 1). The floors of Fig. 2. Flowchart of the methodology used in this study.

5. Mapping of the spatial distribution of regolith mixing depths

ductions. Obtained CPFs have slopes that range from ~3.2 to ~3.4, which are consistent with
previous works [e.g., 21]. Our crater model ages are also consistent with previous crater count-
ing statistics [e.q., 22, 23]. We calculated the regolith mixing depths (Fig. 3B-C) in the crater
floors of target craters by considering the produced crater production functions (CPFs). The
90% fraction of regolith mixing ranges from ~6 m to ~18 m and varies spatially. Then we ob-
tained CSFDs at higher resolutions by using a gridded approach. Fig. 4 shows the spatial distri-
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Fig. 1. Hillshade map of the lunar south pole between 85°S - | depths [e.g., 13] show that water ice may reside at meter to hectare scales, which is consistent
90°S. A. Haworth. B. Shoemaker. C. Faustini. Blue outlines indi- | with our results (Fig. 4). Our analysis indicates that lunar regolith mixing varies spatially in
cate the counting area boundaries (crater floor). Red circles are | crater floors of target craters. It is also observable that are sensitive to the crater populations
individual crater counts. within each grid-size (Fig. 4), meaning that at higher resolutions (i.e., 2.5 km grids) lower
mixing depths are seen. However, average mixing depths are consistent with coarser resolu-
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Fig. 4. Maps showing the spatial regolith mixing depths within the crater floors of target cra-
ters. A-C. Spatial regolith mixing depths in the crater floor of Haworth (~2 m to ~64 m). D-F.
Spatial regolith mixing depths in the crater floor of Shoemaker (~1 m to 64 m). G-l. Spatial
regolith mixing depths in the crater floor of Faustini (~0.5 m to ~6 m).




