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Introduction: An external power source is essential 
for driving in-situ resource utilization (ISRU) pro-
cesses. Since technologies are limited due to launch 
costs, readily available resources must be leveraged. 
Sunlight is a readily available resource and thus concen-
trated solar irradiation is ideal for driving lunar ISRU, 
including ISRU extraction of oxygen or water from the 
lunar regolith.  

Solar Resources on the Moon:  The moon has no 
atmosphere to attenuate solar irradiation, resulting in di-
rect-normal solar irradiation of ~1365 W/m2 compared 
to ~1000 W/m2 on Earth. The lunar declination angle is 
only ~1.5o compared to ~23.5o on the Earth [1], result-
ing in small seasonal variations in solar resources. The 
lunar day is also ~14 earth days with regions of perma-
nent illumination. Thus, the moon is ideally situated for 
using concentrated solar irradiation.  

Concentrating sunlight offers a viable pathway to-
wards efficiently capturing sunlight as process heat to 
drive ISRU processes. There are three main types of so-
lar concentrating technologies: (1) trough systems, (2) 
tower systems, and (3) dish systems. Trough systems 
use single axis sun tracking while tower and dish sys-
tems use two axis sun tracking [2]. Each system is ca-
pable of concentrating solar irradiation for use in differ-
ent applications; trough systems 30-100 suns (where 1 
sun is equal to 1000 W/m2, the direct-normal solar irra-
diation at the surface of the earth), tower systems 500-
5000 suns, and dish systems 1000-10000 suns [3].   

Oxygen Extraction from Lunar Regolith: One 
ISRU process that could utilize concentrated solar irra-
diation is the extraction of oxygen from the lunar rego-
lith. 

Equilibrium Predictions.  Chemical equilibrium 
modeling was performed to forecast chemical composi-
tions as a function of temperature and pressure for lunar 
regolith. Gibb’s Free Energy minimization (ΔG = 0) 
was used to predict equilibrium compositions for iso-
baric processes [4]. The pressure on the moon was ~ 
3×10-15 bar, and the equilibrium composition of each 
species was normalized per unit mass of regolith. The 
regolith compositions were taken from [5]. Equilibrium 
predictions for oxygen are shown in Figure 1. A small 
temperature range is present for favorable O2(g) evolu-
tion due to the extremely low pressure. A dramatic in-
crease in O2(g) favorability occurs at ~800°C and peaks 
at ~ 950 °C before dissociating to O(g).   

Experimental Results.  Thermogravimetric analysis 
(TGA) was performed to assess performance in a non-

equilibrium system. Figure 2 shows the results for a 
TGA experiment using the Lunar Mare regolith simu-
lant LMS-1 that demonstrate oxygen extraction is pos-
sible in a range of temperatures between 800-1300 oC. 
The mass loss isn’t accounted for purely by oxygen in-
dicating other gasses are released upon heating as well. 

 
Figure 1. Equilibrium predictions for O(g) and O2(g) 
as a function of temperature for Low Titanium Mare.   

 

 
Figure 2. TGA results of the extraction of O2(g) (black 

line) from LMS-1 graphed with the temperature pro-
gram (blue line) and the total mass loss (red line).  

 
Water Extraction from Lunar Regolith: Similar 

predictions were made for water extraction in shadowed 
craters. 
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