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Model Calculations of Ice Distribution in the 

South Polar Region: Using previously developed 
methods (e.g., [1]), the possible stabilities of water ice 
(H2O) and dry ice (CO2) in the upper 50 cm and 1 m of 
the regolith were calculated. Water ice is stable within 
those near-surface zones over a greater geographic area 
than is dry ice. To illustrate the model results, we high-
light several locations in the south polar region. 

Shackleton Crater: Artemis III, the first Artemis 
lunar surface mission, is designed to land near the south 
pole, which is located on the rim of Shackleton crater. 
The crater hosts a large PSR that calculations suggest 
may have a near-surface environment with water ice, 
but little dry ice (Fig. 1).  

Amundsen Crater: A previous analysis [2] of land-
ing sites suitable for addressing lunar science objectives 
[3] suggested the floor of Amundsen crater is a high-
priority target.  An analysis [4] of the International 
Space Exploration Coordination Group (ISECG) design 
reference mission also pointed out that Amundsen is a 
good place for a tele-robotic subsurface survey for wa-
ter ice. Calculations presented here (Fig. 1) illuminate 
the advantages of that type of location: it contains a di-
versity of ice types, on an easily traversable crater floor, 
in close proximity to sunlight and the power it provides. 

Model Calculations of Resource Potential: Near-
surface deposits that do not require energy for the re-
moval of overburden may be attractive ISRU targets. 
Using the calculated ice distributions described herein, 
the potential resource tonnage was calculated in the up-
per 1 m (Fig. 2). Resource tonnage is derived assuming 
5.6 ± 2.9 wt% H2O in the regolith, as determined from 
the LCROSS experiment [4].  Because that experiment 
target Cabeus crater, the resource tonnage calculated for 
Cabeus (Fig. 2) should be viewed with a higher confi-
dence than that for other sites (e.g., Haworth, Shoe-
maker, Faustini, and Shackleton craters).  We note that 
the 5.6 wt% value is strictly applicable only to the cold-
est portion of Cabeus, where dry ice is stable at the sur-
face. Thus, we also provide the potential resource ton-
nage for lower proportions (0.1, 0.5, and 1.0 wt%) of 
H2O in the regolith.  

Model calculations suggest 2 × 1010 kg to no more 
than 5 × 1010 kg water ice could be recovered from the 
uppermost 1 m of regolith in Cabeus crater. Similar val-
ues for Haworth, Shoemaker, Faustini, and Shackleton 
are 9 × 109 to 3 × 1010 kg, 9 × 109 to 3 × 1010 kg, 6 × 109 

to 2 × 1010 kg, and 1 × 109 to 4 × 109 kg, respectively. 
Additional tonnage can be recovered at deeper (>1 m) 
horizons.  Depending on the resource recovery method-  

 
Fig. 1. Maps of calculated stability of water ice (left) 
and dry ice (right) in the upper 1 m of regolith in 
Shackleton (top) and Amundsen (bottom) craters. 
 

 
Fig. 2. Calculated masses of water ice  in  several south 
polar craters with a regolith water abundance (5.6 ± 2.9 
wt%, blue zone) measured by the LCROSS experiment. 
A log mass value of 9 on the horizontal axis is equiva-
lent to a million metric tons. 

 
ology, it may be more efficient to access deeper ice at a 
single location than surface ice at geographically distant 
sites.  
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