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Introduction: Estimating modal mineralogy for 

meteorites and asteroids is important for understanding 

compositional diversity and small body evolution in the 

early solar system. Meteorite composition can constrain 

the degree of aqueous alteration and/or thermal 

metamorphism experienced by the asteroid parent body. 

Mid-infrared (MIR) spectroscopy is a common 

telescopic, spacecraft, and laboratory tool used to 

determine mineral composition. Although mineral 

identification is possible through MIR spectroscopy, 

fine-particulates in the MIR do not mix linearly [1], 

making quantification difficult for some materials. 

Multivariate analysis removes the assumption of 

linear mixing across wavelengths and is therefore useful 

for spectroscopic techniques in which non-linear mixing 

occurs. It has been utilized as an effective tool for 

evaluating compositional abundances using several 

types of spectroscopy [2–4]. This technique requires 

preparation of a training set covering the relevant 

compositions and particle sizes. We are constructing a 

fine-particulate (<50 µm) albedo-constrained library 

and training set for multivariate analysis. Here we 

present progress on the development of this training set 

of analog mixtures, some initial assessments of 

expected model accuracy, and plans for future work.  

Sample Preparation: The mineral species utilized 

in this work are terrestrial samples commonly present 

within CM chondrites [5, 6]. These minerals include 

antigorite, cronstedtite, magnetite, pyrrhotite, olivine 

(Fo40, Fo80, Fo90), calcite, dolomite, ferrihydrite, 

gypsum, and enstatite. Natural samples were hand-

picked and in some cases were centrifuged, acid-

washed, or magnetically separated to remove unwanted 

contaminants. Each was hand crushed or milled to 

create fine-particulate samples (<50 µm). 

Currently, 54 mixtures have been analyzed. These 

samples include simple mixtures (35 binary and 4 

ternary) and 15 analog CM chondrites mixtures. All 

samples (including end-members) were darkened using 

11 vol% nanophase carbon powder to constrain the 

albedo to more closely match carbonaceous chondrites, 

as visible albedo can have a strong effect on MIR 

spectral properties. 

Instrumentation: MIR spectra were acquired in a 

simulated asteroid environment (SAE) using the 

Planetary and Asteroid Regolith Spectroscopy 

Environmental Chamber (PARSEC), a custom-built 

planetary environmental spectroscopy chamber at Stony 

Brook. PARSEC is coupled to a Nicolet 6700 FTIR 

spectrometer for emissivity measurements. For SAE 

measurements, the chamber was pumped to ~10–4 mbar 

and cooled to <125 °C. Samples were heated to 80 °C. 

Machine Learning Models: Using end-members 

and mixtures, partial least squares machine learning 

models were constructed, as in [7, 8]. The accuracy of 

each model was evaluated using the parameter leave-

one-out cross-validated root mean square error (LOO 

RMSE-CV). This metric is calculated by removing one 

sample at a time, using a regression model based on the 

other n–1 samples to predict the nth sample. LOO 

RMSE-CV gives the best estimate of how the model 

will perform on unseen data. LOO RMSE-CV range 

from 4.4–17.0 vol%. Model accuracies depend on the 

parameters utilized (e.g., wavenumber range) and 

prediction mineral in question. As spectra are added to 

the multivariate models, the errors will change. 

Murchison Unmixing: A MIR SAE spectrum was 

collected of the CM chondrite Murchison (<45 microns) 

under identical conditions to the training set. Using the 

PLS models, modal mineralogy predictions were made. 

Several species were accurately predicted within 5 vol% 

compared to literature values [5, 6]. These species 

include antigorite, Fo40, Fo80, enstatite, calcite and 

gypsum. Dolomite and ferrihydrite were not included in 

other worker’s estimates [5, 6] and our prediction values 

of <2vol% for each species is consistent. Other minerals 

like Fo90, pyrrhotite, magnetite and cronstedtite were 

either over or underestimated in our model by >5 

volume%. With the addition of more samples within the 

model, the model error is expected to reduce while 

prediction accuracy improves. 

Implications and Ongoing Work: The machine 

learning spectral unmixing models developed here may 

be applicable to telescopic observations of asteroids, 

spectral data from missions like OSIRIS-REx and non-

destructive laboratory investigations of meteorites. 

This training set will be expanded by creating more 

analog mixtures and integrating synthetic coarse-

particulate spectra to predict compositions over a range 

of particle sizes. Saponite will be added to the model as 

an end-member to expand the applicability of this work 

to CI chondrite unmixing. VNIR spectra will be 

collected for all samples to create an equivalent model. 

Lastly, PLS models will be applied to additional 

chondrites to test model accuracy on unseen data. 
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