EMBEDDING SCIENCE JOURNALISM STUDENTS IN NASA FIELD RESEARCH. C. Barry, Z. Dowdy, T. Glotch, D. Rogers, P. Whelley, B. Selvin, 1NASA’s Goddard Space Flight Center, Greenbelt, MD (caela.e.barry@nasa.gov), 2Stony Brook University, Stony Brook, NY, 3ADNET Systems Inc., Bethesda, MD, 1Stony Brook University, Stony Brook, NY, 4University of Maryland at College Park, MD

Introduction: In April 2022, undergraduate journalism students will join NASA scientists on an expedition to Potrillo Volcanic Field, NM, where they will report on the RISE2 team’s work to support NASA’s Artemis missions and advance planetary science objectives. The students are spending the spring semester developing their science journalism skills and knowledge in Stony Brook University (SBU)’s Science Reporting and Writing class (JRN 390), a special topics course offered in collaboration with NASA’s RISE2 team (Remote, In-Situ, and Synchrotron Studies for Science and Exploration). This joint effort is designed to support science literacy in the next generation of journalists through direct exposure to NASA researchers and their work.

Science Journalism Course Goals. Students learn from science journalism experts, practice essential science journalism skills, interface with NASA researchers, participate in a field expedition, and produce basic text and multimedia news stories worthy of publication.

RISE2 Science Goals. RISE2 science is organized around four themes: (1) Preparation for Exploration, (2) Maximizing Exploration Opportunities, (3) Protecting our Explorers, and (4) Maximizing Science from Returned Samples. The Spring 2022 field deployment falls under Theme 2, Maximizing Exploration Opportunities. Scientists will work towards answering outstanding questions about Potrillo Volcanic Field’s geology while testing Con Ops (concepts of operations) for in-situ exploration.

Note to the reader. This abstract was written in March 2022, midway through the science journalism students’ spring semester.

Precedent: The Spring 2022 science journalism course emulates previous collaborations between the SBU School of Communication and Journalism and RISE2’s predecessor team, RIS4E [1]. Past SBU students joined RIS4E at field sites in New Mexico and Hawaii as part of their course work. The current iteration of the program is the first since the onset of the COVID-19 pandemic.

Connecting Students and Scientists: Throughout the semester, students and scientists interact via lab tours and classroom visits to major research institutions. This semester’s visits brought students into contact with scientists at NASA’s Goddard Space Flight Center, Argonne National Laboratory, and the American Museum of Natural History.

Preparing Students for Field Work: The SBU Science Journalism Professor and the RISE2 Public Engagement Lead communicate regularly to convey questions and needs as they arise. Science team members and SBU students receive and review key pre-trip information throughout the months leading up to field work. One of the earliest meetings of JRN 390 is a lab visit with an experienced field scientist who provides a first look at what to expect, shares a list of recommended personal gear, and answers initial student questions. In the final weeks before travel, the Field Lead for the expedition provides comprehensive pre-trip briefings to the science team and the student cohort. Agendas for these briefings include safety plans, behavior and conduct expectations for all participants, and time for questions.

Support and Logistics in the Field: The SBU science journalism cohort is embedded in the RISE2 expedition org structure.

Communication. In the field, the Science Journalism Professor and the RISE2 Public Engagement Lead will continue to work together as primary points of contact between SBU and NASA.

Lodging and transport. Students and scientists are lodged at neighboring hotels. This proximity enables all team members to meet and converse with ease while providing both groups with the option of privacy at the end of the workday. SBU leads transport arrangements for the science journalism team and provides dedicated rental vehicles for the cohort to use in the field.

Safety and conduct. All personnel, across teams, are required to adhere to the same safety and behavioral expectations. Safety and conduct resources are provided for review and discussion before field work. Hard copies are printed and distributed to all participants, alongside other essential documents, for reference in the field.

Expected Outcomes: SBU student reporting will be published online. The authors look forward to sharing highlights and lessons learned from this collaboration after the semester is complete.

Acknowledgements: The RISE2/SBU Science Journalism collaboration is supported by NASA’s Solar System Exploration Virtual Institute (SSERVI).