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Introduction: Evidence of water ice in permanently 

shadowed regions (PSRs) near the lunar poles is attract-

ing robotic and human missions to the Moon. To facili-

tate those missions, the mechanical properties of PSR 

regolith must be assessed to ensure rovers and/or crews 

can traverse them. A previous study of boulder tracks in 

PSRs between 70 to 76 ° S [1] suggest those PSRs were 

just as traversable as highlands and mare terrain. Here 

we utilize Lunar Reconnaissance Orbiter (LRO) DI-

VINER annual maximum and average temperature data 

to identify PSRs closer to the poles with similar thermal 

conditions to those previously found trafficable. 

Bearing capacity of PSRs: The key mechanical 

property in those regions is bearing capacity, which is a 

measure of the ability of soil to bear a load.  Boulder 

tracks were used to evaluate bearing capacity in lunar 

highlands, mare, and pyroclastic regolith [2] and in 

PSRs [1]. The bearing capacities of the PSRs studied by 

[1] were similar to those recorded in sunlit regions of 

the Moon at depths of ~0.28-1 m.  Although PSR rego-

lith is potentially more porous than highland and mare 

regolith (e.g., [3]), the boulder tracks suggest that has 

not significantly reduced the bearing strength in PSRs 

at the observed depths, potentially because water ice 

forms a rigid matrix structure between grains. 

Temperature effects on regolith properties: Wa-

ter ice is thought to have accumulated in PSRs over hun-

dreds of millions of years [4]. Water can thermally mi-

grate through regolith where it remains trapped [5], 

therefore temperature conditions strongly influence the 

distribution of water ice in regolith. Therefore, the me-

chanical properties of regolith, including bearing capac-

ity, is strongly influenced by temperature conditions. 

Mapping traversable PSRs: The PSRs analyzed 

by [1] are characterized by annual maximum and aver-

age temperatures between 160-200 K and 90-130 K re-

spectively at their centers. We applied these tempera-

ture criteria to a map of south polar PSRs [6] to identify 

PSRs that thermally mimic the PSRs analyzed by [1] at 

their centers, as well as throughout their perimeter. 

Mapping was performed from 60°-90°S, where PSR 

candidates were discarded if they were smaller than 

~0.15 km2, limited by the spatial resolution of the used 

DIVINER products and PSR map. We identified 372 

potentially traversable PSRs at the south pole. 

Distribution of PSRs: The selected PSRs are dis-

tributed evenly across the south polar region and are 

found in a wide range of sizes (<1 km2 to >100 km2). 

Some are in areas of interest for future exploration mis-

sions, such as Schrödinger basin (Fig. 1). From a traffi-

cability (bearing capacity) point of view, traverses into 

PSR’s within Schrödinger basin and many other regions 

of interest might be feasible. 

 
Fig. 1 Annual max. temperature map within Schrö-

dinger basin. Black polygons represent PSRs that meet 

the mapping requirements. 

Conclusions: The temperature conditions of select 

PSRs that were deemed traversable have been used to 

identify 372 south polar PSRs which may have similar 

regolith properties. 
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