Sulfur at Mercury

- Sulfur is an expected component of Mercury’s exosphere, but observed sulfur ion abundances [Zurbuchen et al., 2008] are underestimated by current exosphere formation models.
- Here, the velocity distribution and cross-section for photon stimulated desorption (PSD) of neutral sulfur (S^0) was measured from MgS target materials using Resonance enhanced multi-photon ionization - time-of-flight mass spectrometry (REMPI-TOF).
- Estimates of the S^0 desorption rate produced by solar photons suggest that PSD should be included as a source of exospheric sulfur at Mercury.

Experimental Details

- Pellets of 0.3 cm diameter MgS (niningerite) -> produced with a porosity of approximately 20%.
- Lightly scraped with a clean razor blade, and loaded into an ultrahigh vacuum (UHV) chamber.
- PSD initiated using pulsed, unfocused UV eximer laser at 193 nm (6.42 eV).
- 60° incidence, 20 Hz, 10 ns pulse, 10-250 μJ cm$^{-2}$ per pulse.
- REMPI of S^0 using pulsed 254.895 nm light focused in the desorption plume.
- Two photon absorption of the 3P2 ground state to populate the resonant 3F4 excited state, followed by electron ejection upon absorption of a third photon (2+1).
- ~1.5 mJ per 10 ns pulse.
- TOF signal integrated over >1000 laser pulses.
- TOF signal at m=32 amu detected only when both the PSD and REMPI lasers, confirming resonant ionization of photodesorbed S^0.
- Velocity distributions were measured by stepping the time delay between PSD and REMPI laser at 50 ns intervals.

Velocity and Cross-sections

The flux density of the photodesorbed S^0 was measured as a function of time after the initial PSD pulse, and velocity distributions were determined by using the Jacobian transform, $P_v(t) = t_v d^2S(t_0)$ where $S(t_0)$ is the measured signal intensity of desorbed S^0 at probe laser delay time t_0.

The distributions were best fit using a bi-modal Maxwellian distribution consisting of a low temperature thermal component which matches the substrate temperature and a high temperature ‘supra-thermal’ component.

$$P_v(v,T_{trans}) = \frac{1}{2} \left(\frac{m}{\langle E_{trans} \rangle} \right)^2 v^3 \exp \left(\frac{-mv^2}{\langle E_{trans} \rangle} \right)$$

where $\langle E_{trans} \rangle = 2k_B T_{trans}$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>300 (0)</td>
<td>1075 (61)</td>
<td>31.4 %</td>
<td>4x10$^{-22}$</td>
</tr>
<tr>
<td>17</td>
<td>300 (0)</td>
<td>1152 (191)</td>
<td>36.6 %</td>
<td>8x10$^{-23}$</td>
</tr>
</tbody>
</table>

PSD at of Sulfur at Mercury

- Recent exosphere formation models for Mercury have concluded that PSD contributes minimally to the release of Na and K in comparison with thermal and sputtered desorption [Wurz et al., 2019].
- PSD has not been considered for other species such as S^0. The photodesorbed surface flux of S^0, $\Phi(S^0)$, can be determined using:

$$\Phi(S^0) = \Phi_{\lambda>3.5 \text{ eV}} \times \cos(SZA) \times [S]_{surf} \times \sigma(S^0)$$

- S^0 vapor densities due to PSD could reach 3500 cm3 at the surface and about 0.1 cm3 at 1000 km.
- PSD should be considered as a source term for S^0 when modeling the formation of Mercury’s exosphere.

Acknowledgements

The authors thank NASA Planetary Atmosphere Program grants NNX14AH46G (MS) and TMO) and NNX14AU46G (MS) for support. MS also acknowledges support from a SSERVI NPP fellowship, and MS also acknowledges support from the NASA Discovery Data Analysis Program.